Abstract
A number of imaging systems exhibit speckle, which is caused by the interaction of a coherent pulse reflecting off of random reflectors. The limitations of these systems are quite serious because the speckle phenomenon creates a pattern of nulls and peaks from subresolvable scatterers or targets that are difficult to interpret. Another limitation of these pulse-echo imaging systems is that their resolution is dependent on the full spatial extent of the propagating pulse, usually several wavelengths in the axial or propagating dimension and typically longer in the transverse direction. This limits the spatial resolution to many multiples of the wavelength. This paper focuses on the particular case of ultrasound B-scan imaging and develops an inverse filter solution that eliminates both the speckle phenomenon and the poor resolution dependency on the pulse length and width to produce super-resolution ultrasound (SURUS) images. The key to the inverse filter is the creation of pulse shapes that have stable inverses. This is derived by use of the standard Z-transform and related properties. Although the focus of this paper is on examples from ultrasound imaging systems, the results are applicable to other pulse-echo imaging systems that also can exhibit speckle statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.