Abstract

Fluorescent imaging of cellular membranes is challenged by the size of lipid bilayers, which are smaller than the diffraction limit of light. Recently, expansion microscopy (ExM) has emerged as an approachable super-resolution method that requires only widely accessible confocal microscopes. In this method, biomolecules of interest are anchored to hydrogel-based, polymeric networks that are expanded through osmosis to physically separate and resolve features smaller than the diffraction limit of light. Whereas ExM has been employed for super-resolution imaging of proteins, DNA, RNA, and glycans, the application of this method to the study of lipids is challenged by the requirement of permeabilization procedures that remove lipids and compromise the integrity of the membrane. Here, we describe our recently developed protocols for lipid expansion microscopy (LExM), a method that enables ExM of membranes without permeabilization. These detailed protocols and accompanying commentary sections aim to make LExM accessible to any experimentalist interested in imaging membranes with super-resolution. © 2024 Wiley Periodicals LLC. Basic Protocol 1: LExM of alkyne-choline lipids Basic Protocol 2: LExM of IMPACT-labeled lipids Basic Protocol 3: LExM of clickable cholesterol Basic Protocol 4: Determining the expansion factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.