Abstract
Losing the information contained in evanescent waves scattered from an object limits the best achievable resolution in far-field optical imaging systems to about half of the wavelength. This limitation is known as the diffraction limit. In this paper, we propose a new holography-based far-field imaging technique to go beyond the diffraction limit and achieve super-resolution images. In the proposed method, after the recording process, multiple reconstruction processes with appropriate reconstruction waves are performed to extract information about sub-wavelength features of a target object encoded in the evanescent waves scattered from it. It is analytically proved that in the proposed method, by increasing the number of reconstruction steps, the resolution increases. The performance of the method is numerically validated. In numerical analysis, by performing two reconstruction steps, a resolution of 1/14 of the working wavelength is achieved. This resolution can be further improved by increasing the number of reconstruction steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.