Abstract

Improving the image quality of small particles is a classic problem and especially challenging when the distance between particles are below the optical diffraction limit. We propose a imaging system illuminated with radially polarized light combined with a suitable substrate that contains a thin dielectric layer to demonstrate that the imaging quality can be enhanced. The coupling between the evanescent wave produced in a designed thin dielectric layer, the small particles and the propagating wave forms a mechanism to transfer sub-wavelength information about the particles to the far field. The smallest distinguished distance reaches to 0.634λ, when the imaging system is composed of a high numerical aperture (NA=0.9) lens and the illumination wavelength λ = 632nm, beyond the diffraction limit 0.678λ. The lateral resolution can be further improved by combining the proposed structure with superresolution microscopy techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call