Abstract
Rotating black holes (BHs) can efficiently transfer energy to the surrounding environment via superradiance. In particular, when the Compton length of a particle is comparable to the gravitational radius of a BH, the particle's occupation number can be exponentially amplified. In this work, we investigate the effect of the primordial-black-hole (PBH) superradiant instabilities on the generation of heavy bosonic dark matter (DM) with mass above $\sim$ 1 TeV. Additionally, we analyze its interplay with other purely gravitational and therefore unavoidable DM production mechanisms such as Hawking emission and the ultraviolet freeze-in. We find that superradiance can significantly increase the DM density produced by PBHs with respect to the case that only considers Hawking emission, and hence lower initial PBH densities are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.