Abstract

We theoretically investigate the effect of long-range dipole-dipole interaction (LRDDI) on a superradiant laser (SL). This effect is induced from the atom-photon interaction in the dissipation process. In the bad-cavity limit usually performed to initiate SL, we demonstrate that cavity photon number oscillates as an interparticle distance of the atoms varies. Similarly the atom-atom coherence alternates with signs, showing critical transitions alternatively in SL operations. This suggests a complexity of the collective effect emerging in a large ensemble of atoms. Therefore this effect in a SL cannot be simply interpreted by only a part of the whole ensemble. We numerically solve for a steady-state SL including the spatially dependent LRDDI, and locate the maximal cavity photon number and the minimal spectral linewidth respectively at the optimal atomic separations in the setting of an equidistant atomic array. The scaling of a finite number of atoms shows that a steady-state SL outperforms the one without LRDDI, which allows for probing narrow atomic transitions and is potentially useful for precision measurements and next-generation optical clocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call