Abstract

We demonstrate numerically that superradiance could play a significant role in nonphotochemical quenching (NPQ) in light-harvesting complexes. Our model consists of a network of five interconnected sites (discrete excitonic states) that are responsible for the NPQ mechanism. Damaging and charge transfer states are linked to their sinks (independent continuum electron spectra), in which the chemical reactions occur. The superradiance transition in the charge transfer (or in the damaging) channel, occurs at particular electron transfer rates from the discrete to the continuum electron spectra, and can be characterized by a segregation of the imaginary parts of the eigenvalues of the effective non-Hermitian Hamiltonian. All five excitonic sites interact with their protein environment that is modeled by a random stochastic process. We find the region of parameters in which the superradiance transition into the charge transfer channel takes place. We demonstrate that this superradiance transition has the capability of producing optimal NPQ performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.