Abstract
The superprism phenomenon, the dispersion of light 500 times stronger than the dispersion in conventional prisms, was demonstrated at optical wavelengths in photonic crystals (PC's) fabricated on Si. Drastic light-beam steering in the PC's was achieved by slightly changing the incident wavelength or angle. The scanning span reached 50/spl deg/ with only a 1% shift of incident wavelength, and reached 140/spl deg/ with only a 14/spl deg/ shift of the incident angle at wavelengths around 1 /spl mu/m. The propagation direction was quantitatively interpreted in terms of highly anisotropic dispersion surfaces derived by photonic band calculation. The physics behind this demonstration will open a novel field called photonic crystalline optics. The application of these phenomena promises to enable the fabrication of integrated microscale lightwave circuits (/spl mu/LC's) on Si with large scale integrated (LSI)-compatible lithography techniques. Such /spl mu/LC's will allow more efficient use of wavelength resources when used in wavelength multiplexers/demultiplexers or dispersion compensators by enabling lower loss and broader bandwidth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.