Abstract

The expected energetic performances are presented for amplification of short pulses (approximately 10 -12 s) either directly in chain pulsed chemical laser (PCL) active medium, or in active media created by optical pumping of resonantly absorbing molecules by radiation of PCL. The calculations were based on the data for PCL energetic and amplifying performances and also on the data for pumping of N 2 O molecules by HF laser radiation, both being obtained by us earlier. For amplifying a short pulse in DF-CO 2 PCL active medium, the energy output of 6J/l is achievable, while 8 - 10 J/l is attainable for regenerative amplification in HF(DF) laser (50 J/l(DOT)atm - under free oscillation conditions for both). For regime of optical pumping, the energy of N 2 O short-pulse radiation can make 10% of pump (PCL output) energy. A series of other promising three- and four-atomic molecules is considered. The comparison of various variants of embodying of superpowerful laser systems based of chain chemical lasers is carried out. The conception of construction of short- pulsed laser systems with radiation energy of up to 10 4 J is submitted with the expectation of their using for creation of dense relativistic plasma, as new perspective object of researches, and for realization of laser fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.