Abstract
We describe a family of quantum states of the Schr\"odinger cat type as superpositions of the harmonic oscillator coherent states with coefficients defined by the quadratic Gauss sums. These states emerge as eigenfunctions of the lowering operators obtained after canonical transformations of the Heisenberg-Weyl algebra associated with the ordinary and fractional Fourier transformation. The first member of this family is given by the well known Yurke-Stoler coherent state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.