Abstract

It is known that superposition signaling in Gaussian interference networks is capable of improving the achievable rate region. However, the problem of maximizing the rate gain offered by superposition signaling is computationally prohibitive, even in the simplest case of two-user single-input single-output interference networks. This paper examines superposition signaling for the general multiple-input multiple-output broadcast Gaussian interference networks. The problem of maximizing either the sum rate or the minimal user’s rate under superposition signaling and dirty paper coding is solved by a computationally efficient path-following procedure, which requires only a convex quadratic program for each iteration but ensures convergence at least to a locally optimal solution. Numerical results demonstrate the substantial performance advantage of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.