Abstract

Overcoming the influence of noise and imperfections is a major challenge in quantum computing. Here, we present an approach based on applying a desired unitary computation in superposition between the system of interest and some auxiliary states. We demonstrate, numerically and on the IBM Quantum Platform, that parallel applications of the same operation lead to significant noise mitigation when arbitrary noise processes are considered. We first design probabilistic implementations of our scheme that are plug and play, independent of the noise characteristic and require no postprocessing. We then enhance the success probability (up to deterministic) using adaptive corrections. We provide an analysis of our protocol performance and demonstrate that unit fidelity can be achieved asymptotically. Our approaches are suitable to both standard gate-based and measurement-based computational models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call