Abstract

The 7075 (Al-Zn-Mg-Cu) aluminium alloy is the reference alloy for aerospace applications due to its specific mechanical properties at room temperature, showing excellent tensile strength and sufficient ductility. Formability at high temperature can be improved by obtaining superplasticity as a result of fine, equiaxed and highly misoriented grains prone to deform by grain boundary sliding (GBS). Different severe plastic deformation (SPD) processing routes such as ECAP, ARB, HPT and FSP have been considered and their effect on mechanical properties, especially at intermediate to high temperatures, are studied. Refined grains as fine as 100 nm and average misorientations as high as 39o allow attainment of high strain rate superplasticity (HSRSP) at lower than usual temperatures (250-300oC). It is shown that increasing misorientations are obtained with increasing applied strain, and increasing grain refinement is obtained with increasing processing stress. Thus, increasing superplastic strains at higher strain rates, lower stresses and lower temperatures are obtained with increasing processing strain and, specially, processing stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call