Abstract

The superplasticity of a hot-rolled AZ31 Mg alloy was investigated by uniaxial tensile tests at temperature range 250-450oC and strain rate range 0.7×10-3-1.4×10-1s-1. Superplastic formability of the alloy was evaluated by gas bulging test at elevated temperatures. The threshold stress for grain boundary sliding (GBS) was calculated and the topography during superplastic deformation was observed by SEM. It is found that, at 400 oC and 0.7×10-3 s-1, the maximum elongation reaches 362.5%. GBS is the predominant deformation mechanism and characterized by a pronounced improvement in homogeneity with increasing temperatures, indicating a transformation of GBS mode from cooperative GBS (CGBS) to individual GBS (IGBS). The improved homogeneity of GBS can be interpreted in terms of decreased threshold stress with increasing temperatures. Gas bulging test demonstrates that the temperature for the best superplastic formability is 400 oC and a hemispherical part with a specific limiting dome height of 0.51 was obtained, suggesting good application prospect for this alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.