Abstract

A computational process model for the super plastic formation of a generalized cup is presented that takes into account the variation in thinning in the unsupported region. The relative pole to edge thinning arises due to the change in the state of stress from balanced biaxial at the pole to plane strain at the edge. Using kinematic conditions and material constitutive equations, a relationship between the instantaneous thickness at the pole and edge is developed. An equation for thickness variation from center to edge in terms of convected coordinates is postulated. Process parameters including thickness profile and pressure-time cycle for the generalized cup are determined using an incremental formulation. The solution developed in Part II depends on process and material parameters, unlike the uniform thinning model. The thickness profile for different shapes like the dome, cup, and cone formed from superplastic aluminum 7475 and aluminum-lithium alloys are compared with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.