Abstract

Tensile deformation of nanocrystalline ZrO2 + 5 mol% Y2O3 at temperatures in the range of 1283–1403 K is described. It is demonstrated (a) that steady state flow is possible at temperatures of the order of 0.42 Tm, where Tm is the absolute melting point, (b) that 70% engineering strain could be obtained at 1403 K (0.46 Tm), and (c) that significant grain boundary sliding was present during deformation. Static and dynamic grain growth as also a decrease in the relative density of the specimen with deformation could be observed. The present results as well as those of Owen and Chokshi concerning superplastic flow in sub-microcrystalline materials taken from literature could be accounted for quantitatively using the grain boundary sliding controlled flow model of Padmanabhan and Schlipf, originally proposed for microcrystalline superplastic alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.