Abstract
Superpixel segmentation aims at grouping discretizing pixels into high-level correlative units and reducing the complexity of subsequent tasks, e.g., saliency detection and object tracking. Existing superpixel segmentation algorithms mainly focus on maintaining the geometrical information, while neglecting the irregular structure of superpixels. In this paper, a superpixel segmentation method is proposed to generate approximately structural superpixels with sharp boundary adherence and comprehensive semantic information. The superpixel segmentation is formulated as a square-wise asymmetric partition problem, where the semantic perceptual superpixels are recorded in a square level to preserve abundant semantic information and save storage simultaneously. Moreover, in order to achieve regular-shape superpixel units to better adhere to image boundaries and contours, a combinatorial optimization strategy is devised to achieve an optimal combination of squares and isolated pixels. Experimental comparisons with some state-of-the-art superpixel segmentation methods on the public benchmarks demonstrate the effectiveness of the proposed method quantitatively and qualitatively. In addition, we have applied the method to brain tissue segmentation to illustrate superior performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.