Abstract
Superpixel segmentation has been one of the most important tasks in computer vision. In practice, an object can be represented by a number of segments at finer levels with consistent details or included in a surrounding region at coarser levels. Thus, a superpixel segmentation hierarchy is of great importance for applications that require different levels of image details. However, there is no method that can generate all scales of superpixels accurately in real time. In this paper, we propose the superhierarchy algorithm which is able to generate multi-scale superpixels as accurately as the state-of-the-art methods but with one to two orders of magnitude speed-up. The proposed algorithm can be directly integrated with recent efficient edge detectors to significantly outperform the state-of-the-art methods in terms of segmentation accuracy. Quantitative and qualitative evaluations on a number of applications demonstrate that the proposed algorithm is accurate and efficient in generating a hierarchy of superpixels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.