Abstract

Superpixel segmentation is a fundamental computer vision technique that finds application in a multitude of high level computer vision tasks. Most state-of-the-art superpixel segmentation methods are unsupervised in nature and thus cannot fully utilize frequently occurring texture patterns or incorporate multiscale context. In this paper, we show that superpixel segmentation can be improved by leveraging the superior modeling power of deep convolutional autoencoders in a fully unsupervised manner. We pose the superpixel segmentation problem as one of manifold learning where pixels that belong to similar texture patterns are assigned near identical embedding vectors. The proposed deep network is able to learn image-wide and dataset-wide feature patterns and the relationships between them. This knowledge is used to segment and group pixels in a way that is consistent with a more global definition of pattern coherence. Experiments demonstrate that the superpixels obtained from the embeddings learned by the proposed method outperform the state-of-theart superpixel segmentation methods for boundary precision and recall values. Additionally, we find that semantic edges obtained from the superpixel embeddings to be significantly better than the contemporary unsupervised approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.