Abstract

Given the escalating frequency and severity of global forest fires, it is imperative to develop advanced detection and segmentation technologies to mitigate their impact. To address the challenges of these technologies, the development of deep learning-based forest fire surveillance has significantly accelerated. Nevertheless, the integration of graph convolutional networks (GCNs) in forest fire detection remains relatively underexplored. In this context, we introduce a novel superpixel-based graph convolutional network (SCGCN) for forest fire image segmentation. Our proposed method utilizes superpixels to transform images into a graph structure, thereby reinterpreting the image segmentation challenge as a node classification task. Additionally, we transition the spatial graph convolution operation to a GraphSAGE graph convolution mechanism, mitigating the class imbalance issue and enhancing the network’s versatility. We incorporate an innovative loss function to contend with the inconsistencies in pixel dimensions within superpixel clusters. The efficacy of our technique is validated on two different forest fire datasets, demonstrating superior performance compared to four alternative segmentation methodologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call