Abstract

Nowadays, it is well established that the physical properties of confined liquids strongly differ from those in bulk phase. While dynamical and structural properties were strongly explored, dielectric properties are poorly studied despite their importance in the understanding and the modelling of molecular mechanism in a number of nano-applications such as nanofluidics, nanofiltration, and nanomedicine. Among them, the dielectric permittivity is probably one of the most important. The lack of knowledge about it strongly limits our ability to model fluid-material interactions and more generally our understanding of the behaviour of confined fluids. Recently, the dielectric permittivity of confined water in silica, Metal Organic Frameworks, and graphene materials was found to be slightly higher than the permittivity of water in bulk phase. In this work, the permittivity of water and dichloromethane confined in carbon nanotubes was predicted by means of molecular dynamics simulations. The static dielectric constant was found to be 700, i.e., 10-fold higher than the bulk value. This superpermittivity has, for origin, the excluded volume and the presence of an unconfined direction leading to a pre-orientation of water molecules close to the pore wall and an increase in dipolar fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.