Abstract

Cu2Se nanoparticles were synthesized using the standard Schlenk line and glove box techniques, with the hot-injection method. The X-ray diffraction (XRD) analysis showed that the initial nanoparticles were formed in a stoichiometric Cu2Se phase with a cubic structure. When the nanoparticles are exposed to air, the diffraction peaks shift to higher angles. This suggests that the nanoparticles are changed to a nonstoichiometric Cu2-deltaSe phase with copper vacancies. The mean size of the nanoparticles was about 7 nm. The magnetic results show that the initial nanoparticles were diamagnetic, and after 1-week air exposure, they became paramagnetic. This dramatic change from diamagnetic to paramagnetic can be explained by the oxidation of Cu+ into Cu2+ at the nanoparticle surface. In addition, the superparamagnetic properties were observed to have a blocking temperature of 150 K. The coercive field decreased as the temperature approached the blocking temperature, and eventually vanished above the blocking temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.