Abstract
Manganese ferrite nanoparticles, in the size range 3.3–9.0 nm, are prepared by a hydrothermal coprecipitation process and peptized in aqueous solution. The magnetization curves recorded at room temperature on diluted colloidal sols allow characterizing the distribution of magnetic moment by using a simple Langevin formalism. Mossbauer spectroscopy measurements performed on powder samples at 77 K exhibit a quadrupolar doublet which intensity grows at the expense of the hyperfine sextet pattern as the nanoparticles mean size decreases. The magnetic dynamics behavior is then investigated by measurements of magnetic hysteretic properties at 5 K and temperature dependence of the zero field cooling (ZFC) susceptibility. The values found for the effective anisotropy constant and the dependence of the irreversibility field, inversely proportional to the reference size, clearly indicate that the magnetic anisotropy of our nanoparticles finds its origin on the disordered surface layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.