Abstract

Multistimuli-responsive polymeric nanoparticles with core-shell architecture were prepared by coating superparamagnetic Fe3O4 nanoparticle cores with reduction/pH dual-responsive poly(methacrylic acid) (PMAA) as shells and thermal-responsive poly(N-isopropylacrylamide) (PNIPAM) as a "gatekeeper" on the surface via two-stage distillation precipitation polymerization. The Fe3O4@PMAA nanoparticles were synthesized using N,N-bis(acryloyl)cystamine (BACy) as cross-linker which would be easily biodegradable in the presence of dithiothreitol (DTT) or glutathione (GSH). The cumulative release profile was investigated under different conditions, such as media pH, reductive agents, and temperature, with doxorubicin hydrochloride (DOX) as a model anticancer drug. They showed a low leakage of DOX at pH 7.4 (less than 11% in 24 h), while the release significantly accelerated at pH 5.0 and 10 mM GSH (over 60% in 5 h), realizing the "triggered release" of drug in the targeted tissues. The nanoparticles exhibited excellent biocompatibility while the DOX-loaded nanoparticles showed great promise of antitumor efficacy as free DOX by the MTT assay and CLSM analysis. The results suggest that the novel biodegradable nanoparticles with high drug loading capacity and multiresponsive controlled release capability could serve as an excellent gene/drug delivery system candidate for cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.