Abstract

The present investigation reports the synthesis of superparamagnetic La0.5Sr0.5Ti0.5Fe0.5O3 by modified polymeric precursor method and the effect of temperature on its structural and magnetic properties. The structures of the phases, calcined at different temperatures, were refined in the space group Pbnm with orthorhombic setting. The crystallite size and specific surface area during the decomposition process were monitored up to 1100 °C. A pure nanosized La0.5Sr0.5Ti0.5Fe0.5O3 powder with high-specific surface area of 49 m2 g-1 was obtained after calcination at 500 °C, while the crystallite size was found to be 18 nm, which was in good agreement with the grain size (19 nm) obtained from TEM investigations. The field dependence of magnetization (M–H) measurements indicate that all the samples exhibit weak ferromagnetic behavior due to slight canting of the adjacent Fe3+ spins. The value Mr/Ms of nano sample calcined at 500 °C indicates the formation of superparamagnetic phase. Magnetization increase significantly with decreasing particle size, while there is sharp decrease in coercivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.