Abstract

The study of ceramic materials has attracted the attention of many researchers due to the possibility of their use in nanotechnology. The spinel ferrites form a large group of materials with a broad range of applications. Some examples include electronic devices such as high-frequency transformer cores, antenna rods, induction-tuners, among many others. However, when the ferritic materials display superparamagnetic behavior, their potential for biological applications like drug delivery, hyperthermia, resonance magnetic imaging and magnetic separation, become amazingly high. Therefore, the superparamagnetism is a characteristic strongly desired for spinel ferrites. Since this phenomenon is size-dependent, the methodologies to synthesize these materials has emerged as a crucial step in order to obtain the desired properties. In this regarding, several synthetic processes have been developed. For example, co-precipitation is a fast and cheap method to synthesize superparamagnetic spinel ferrites. However, methodologies involving microwave, ultrasound or polymers frequently result in these kind of materials. Therefore, this review brings a brief historic introduction about spinel ferrites as well as essential concepts to understand their structure and magnetic properties. In addition to this, recent advances in synthesis and applications of the superparamagnetic spinel ferrites are mentioned. Contents of Paper

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.