Abstract

Nanoparticles show several interesting new physical and biological properties and therefore play an increasing role in pharmaceutics and medicine. For more than 30 years this research field has been developing slowly but steadily from physical and biological interest (bench) to applications in clinics (bedside). However, many of these particles for biomedical applications are still in the pre-clinical or clinical phase. Combined with drugs or genes these nanoparticles may change the viability of or the transcription processes in cells, which make them interesting for the pharmaceutical industry, cell biology and diagnostics. Because most of the application of superparamagnetic nanoparticles as therapeutic tool, like non-viral vector, drug delivery, are still far from clinical use, this review will concentrate on superparamagnetic nanoparticles as versatile agent for early diagnosis, including the use of such particles as contrast agent for MR imaging and as vehicle for the detection of biomarkers.

Highlights

  • Nanoparticles show several interesting new physical and biological properties and play an increasing role in pharmaceutics and medicine

  • Combined with drugs or genes these nanoparticles may change the viability or the transcription processes in cells, which make them interesting for the pharmaceutical industry, cell biology and diagnostics. They are: a) offering more specific experiments in the discovery and development of a drug as they can interact with cells in an unspecific or in a specific way [1], b) useful as a versatile tool in early diagnostics, often combined in screening novel drugs, tracking cells such as stem cells [2, 3] or adsorb at biomarkers, genes etc., and c) may act as a delivery vehicle for therapeutics which can be modified to be targeted to specific cells or regions of disease and to minimise secondary systemic negative effects [4] and d) act physically by heating up the surrounding tissue by use of an external field [5, 6]

  • For many years Superparamagnetic iron oxide nanoparticles (SPION) have been used in diagnostics as a contrast agent in magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) [27, 44,45,46]

Read more

Summary

Summary

Nanoparticles show several interesting new physical and biological properties and play an increasing role in pharmaceutics and medicine. For more than 30 years this research field has been developing slowly but steadily from physical and biological interest (bench) to applications in clinics (bedside). Many of these particles for biomedical applications are still in the pre-clinical or clinical phase. Combined with drugs or genes these nanoparticles may change the viability of or the transcription processes in cells, which make them interesting for the pharmaceutical industry, cell biology and diagnostics.

Introduction
Superparamagnetic ironoxide nanoparticles
Applications in imaging
Conclusion and outlook
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.