Abstract

Magnetic nanoparticles are found to exhibit exciting and substantially distinct magnetic properties due to high surface-to-volume ratio and several crystal structures in comparison to those discovered in their bulk counterparts. The properties of nanoparticles also largely depend on the route of their synthesis. In the present work, we report the synthesis of superparamagnetic nanoparticles of Mn0.5Zn0.5LaxFe2−xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites by co-precipitation method. Structural, morphological and elemental study has been performed using x-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), FESEM and EDS. Different structural parameters (crystallite size, interplanar spacing and lattice constant) have been calculated from XRD. Formation of cubical spinel structure has been confirmed from XRD and FTIR. Cation distribution for all the samples has been proposed and used for calculation of various theoretical parameters. Magnetic properties have been investigated using vibrating sample magnetometer at room temperature and show transition between paramagnetic and superparamagnetic behavior. Maximum saturation magnetization and magnetic moment have been obtained at x = 0.050. The results are attributed to the solubility of La in Mn–Zn ferrite and the size of nanoparticles. The samples have also been analyzed for dielectric, electric and optical properties. For x ≤ 0.050, a blue shift in absorbance and photoluminescence measurements has been observed due to quantum confinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call