Abstract

Essential oils are complex mixtures of volatile compounds with diverse biological properties. Antimicrobial activity has been attributed to the essential oils as well as their capacity to prevent pathogenic microorganisms from forming biofilms. The search of compounds or methodologies with this capacity is of great importance due to the fact that the adherence of these pathogenic microorganisms to surfaces largely contributes to antibiotic resistance. Superparamagnetic iron oxide nanoparticles have been assayed for diverse biomedical applications due to their biocompatibility and low toxicity. Several methods have been developed in order to obtain functionalized magnetite nanoparticles with adequate size, shape, size distribution, surface, and magnetic properties for medical applications. Essential oils have been evaluated as modifiers of the surface magnetite nanoparticles for improving their stabilization but particularly to prevent the growth of microorganisms. This review aims to provide an overview on the current knowledge about the use of superparamagnetic iron oxide nanoparticles and essential oils on the prevention of microbial adherence and consequent biofilm formation with the goal of being applied on the surface of medical devices. Some limitations found in the studies are discussed.

Highlights

  • Infections caused by microorganisms are a concern for human health

  • Essential oils that are obtained from aromatic plants by steam distillation or by mechanical processes from the epicarp of Citrus, or “dry” distillation [3] have been described as potential antimicrobial agents due to their capacity for affecting the microbial membrane potential, increasing the membrane permeability, which facilitates the transport of nutrients and ions [4]

  • This approach had the capacity of stabilizing and controlling the release of the volatiles that under the free form would volatilize and would be no more present after some hours of application on the cotton surface. Those authors [146] showed that nanofluid coating containing limonene affected both the initial stage of biofilm formation and its development after 1, 2, or 3 days on coated textile materials for P. aeruginosa and S. aureus; the effect of nanofluid coating containing eugenol was more pronounced on adherence and initial biofilm formation in comparison with the limonene-based one for P. aeruginosa. These results proved that the functionalized textile material cumulated the anti-adherence ability of magnetite nanoparticles with the antimicrobial activity of eugenol and limonene against P. aeruginosa and S. aureus, which were frequently detected in cutaneous wound infections, without their release by volatilization, [146]

Read more

Summary

Introduction

Infections caused by microorganisms are a concern for human health. Generally, antibiotics are used for the treatment of bacterial infections, but antibiotic resistance arises and spreads rapidly due to multifactorial causes, such as the natural process of horizontal transference of genes (conjugation, transformation, and transduction) facilitating the spread of antibiotic resistance that can cross several bacterial species mostly associated to an inappropriate use of antibiotics [1]. Virulence factors (such as toxins, enzymes, structural elements, such as flagella, pilli, capsule, etc.) promote disease by either damaging the host or tricking the host immune system, and they need to be neutralized or suppressed for combating bacterial pathogenicity This is another way to combat those microorganisms with much less possibility to develop bacterial resistance to antibiotics [2]. The intense flavor and aroma may render it difficult to use the essential oils in diverse applications. For these reasons, scientists have developed ways to hide these undesirable characteristics of essential oils and simultaneously enhance their biological properties. Nanotechnology has explored formulations for better using essential oils in diverse fields from the agri-food industry to the pharmaceutical industry [4]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call