Abstract

Iron oxide nanoparticles-incorporated carrageenan (CAR)/PHEMA composites of interpenetrating network (IPN) type were successfully prepared by in situ ferrite synthesis in the polymer network. The IPN structure was constructed at CAR/PHEMA compositions of 15/85 and 40/60 (wt/wt) by polymerization and cross-linking of 2-hydroxyethylmethacrylate as an impregnating solvent of CAR gels. As a result of this IPN construction, the composites were firm and showed a good shape-retentivity in their gelatinous state. SQUID magnetometry and X-ray diffractometry were conducted for evaluation of the magnetic property of the inorganic-hybridized IPN composites. Magnetite particles with 10–30nm sizes were distributed inside the IPNs treated with the repeatable ferrite synthesis; thereby, the hybrids displayed a superparamagnetic character at ambient temperature. Specifically, the 40/60 CAR/PHEMA IPN imparted a practically passable value (10–15emu (g sample)−1) of saturation magnetization. The present IPN system offers a potential for application as a biocompatible magnetic material used in hydro-surroundings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call