Abstract

When exposed to an external magnetic field, 2D layers of spherical superparamagnetic colloids form specific structures which depend on the features of the external field. If the magnetic field is constant along time, superparamagnetic colloids self-organize into chains oriented in the direction of the field. If the magnetic field is rotating in the plane of the suspension, below a critical frequency, the superparamagnetic beads still aggregate into chains, but these chains rotate with the magnetic field. When the rotation reaches a certain speed, the colloids aggregate in rotating disklike clusters. In this work, we focused on the early stages of the disklike clusters' aggregation and the dynamics of this process. In particular, we observed experimentally that before clustering into disklike structures, the colloids were aggregating into rotating chains, just as they did in suspensions submitted to a magnetic field rotating at a lower rate. Over time, the chains interact with one another and aggregate into disklike clusters, resulting in a mixture of chains and disks in the sample. Finally, we propose a model to characterize the suspension over time in terms of the proportion of chains and disklike clusters, and report its deduced temporal evolution for different frequencies and volume fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.