Abstract

Superoxide (O2•-) is a toxic radical, generated via the adventitious reduction of dioxygen (O2), which has been implicated in a number of human disease states. Nonheme iron enzymes, superoxide reductase (SOR) and superoxide dismutase (SOD), detoxify O2•- via reduction to afford H2O2 and disproportionation to afford O2 and H2O2, respectively. The former contains a thiolate in the coordination sphere, which has been proposed to prevent O2•- oxidation to O2. The work described herein shows that, in contrast to this, oxidized thiolate-ligated [FeIII(SMe2N4(tren)(THF)]2+ (1ox-THF) is capable of oxidizing O2•- to O2. Coordinating anions, Cl- and OAc-, are shown to inhibit dioxygen evolution, implicating an inner-sphere mechanism. Previously we showed that the reduced thiolate-ligated [FeII(SMe2N4(tren))]+ (1) is capable of reducing O2•- via a proton-dependent inner-sphere mechanism involving a transient Fe(III)-OOH intermediate. A transient ferric-superoxo intermediate, [FeIII(SMe2N4(tren))(O2)]+ (3), is detected by electronic absorption spectroscopy at -130 °C in the reaction between 1ox-THF and KO2 and shown to evolve O2 upon slight warming to -115 °C. The DFT calculated O-O (1.306 Å) and Fe-O (1.943 Å) bond lengths of 3 are typical of ferric-superoxo complexes, and the time-dependent DFT calculated electronic absorption spectrum of 3 reproduces the experimental spectrum. The electronic structure of 3 is shown to consist of two antiferromagnetically coupled (Jcalc = -180 cm-1) unpaired electrons, one in a superoxo π*(O-O) orbital and the other in an antibonding π*(Fe(dyz)-S(py)) orbital.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call