Abstract

We have shown that nitric oxide treatment for 30-90 min causes inhibition of insulin secretion, DNA damage and disturbs sub-cellular organization in rat and human islets of Langerhans and HIT-T15 cells. Here rat islets and beta-cell lines were treated with various free radical generating systems S-nitrosoglutathione (nitric oxide), xanthine oxidase plus hypoxanthine (reactive oxygen species), 3-morpholinosydnonimine (nitric oxide, super-oxide, peroxynitrite, hydrogen peroxide) and peroxynitrite and their effects over 4 h to 3 days compared with those of the cytokine combination interleukin-1beta, tumour necrosis factor-alpha and interferon-gamma. End points examined were de novo protein synthesis, cellular reducing capacity, morphological changes and apoptosis by acridine orange cytochemistry, DNA gel electrophoresis and electron microscopy. Treatment (24-72 h) with nitric oxide, superoxide, peroxynitrite or combined cytokines differentially decreased redox function and inhibited protein synthesis in rat islets of Langerhans and in insulin-containing cell lines; cytokine effects were arginine and nitric oxide dependent. Peroxynitrite gave rare apoptosis in HIT-T15 cells and superoxide gave none in any cell type, but caused the most beta cell-specific damage in islets. S-nitroso-glutathione was the most effective agent at causing DNA laddering or chromatin margination characteristic of apoptotic cell death in insulin-containing cells. Cytokine-induced apoptosis was observed specifically in islet beta cells, combined cytokine effects on islet function and death most resembled those of the mixed radical donor SIN-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call