Abstract

Two common bean (Phaseolus vulgaris L.) mutants, sodPv 1 and sodPv 2, exhibiting foliar superoxide dismutase (SOD) activity of only 25% and 40% of their mother control (MC) cv. VL 63 were isolated in EMS-mutagenized (0.15%, 8 h) M2 progeny. Native-PAGE analysis revealed occurrence of Mn SOD, Fe SOD, Cu/Zn SOD I and Cu/Zn SOD II isozymes in MC, while Fe SOD, and Mn SOD were not formed in sodPv 1 and sodPv 2 leaves, respectively. In-gel activity of individual isozymes differed significantly among the parents. SOD deficiency is inherited as recessive mutations, controlled by two different nonallelic loci. Gene expressions using qRT PCR confirmed higher expressions of Cu/Zn SOD transcripts in both mutants and the absence of Fe SOD in sodPv 1 and Mn SOD in sodPv 2. In 50 μM arsenic, Cu/Zn SODs genes were further upregulated but other isoforms downregulated in the two mutants, maintaining SOD activity in its control level. In an F2 double mutants of sodPv 1 × sodPv 2, no Fe SOD, and Mn SOD expressions were detectable, while both Cu/Zn SODs are down-regulated and arsenic-induced leaf necrosis appeared. In contrast to both mutants, ROS-imaging study revealed overaccumulation of both superoxides and H2O2 in leaves of double mutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.