Abstract

Insulin stimulates the production of superoxide and hydrogen peroxide in various tissues. Hydrogen peroxide has been proposed to be an intracellular second messenger for insulin and a moderator of cellular proliferation and differentiation. We previously found that cell proliferation is increased in small intestinal mucosa of streptozotocin-diabetic rats. The current study was undertaken to determine if superoxide dismutase (SOD), the enzyme that converts superoxide to hydrogen peroxide, is altered in the mucosa of the alimentary tract and renal cortex of the diabetic rat, and if so, whether SOD responds to insulin treatment. Total SOD and cyanide-insensitive [manganese-containing SOD (Mn SOD)] SOD were measured by the nitroblue tetrazolium inhibition assay. We studied ad libitum fed animals, where diabetics are hyperphagic and pair-fed animals, where hyperphagia is not present. Since cyclic nucleotides appear to control cell proliferation in some tissues, we also measured cAMP and cGMP in mucosa of the small intestine. In ad libitum fed animals, total SOD was depressed in the mucosa of duodenum, jejunum, and ileum, but not in the cecum or colon of the streptozotocin-diabetic rats. The level of Mn-SOD was not affected by diabetes or insulin treatment, but the cyanide-sensitive [copper- and zinc containing SOD (Cu-Zn SOD] SOD was depressed in the small intestine and colon of diabetic rats. Insulin treatment restored total and Cu-Zn SOD activity in the small intestine to normal and increased Cu-Zn SOD activity in the colon to normal. Pair-fed animals showed the same changes in the SOD activity of jejunal mucosa that were found in ad libitum fed animals. In renal cortex, diabetes did not alter total SOD, but increased Mn SOD and decreased Cu-Zn SOD. Both responses were reversed by insulin treatment. Cyclic nucleotide concentrations were not affected by diabetes. We conclude that SOD enzymes re altered in diabetes, at least in proliferating tissues. Responses are tissue specific. The mucosa of the small intestine and colon show decreased Cu-Zn SOD, the SOD of the cecum is unaffected, and the kidney shows increased Mn SOD and decreased Cu-Zn SOD. The SOD responses of diabetics are reversed by insulin treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call