Abstract

Involvement of reactive oxygen species in regulation of plant growth and development is recently being demonstrated with various results depending on the experimental system and plant species. Role of superoxide and its metabolism in germination and axis growth was investigated in case of Vigna radiata seeds, a non-endospermous leguminous species having epigeal germination, by studying the effect of different reactive oxygen species (ROS) inhibitors, distribution of O2•ˉ and H2O2 and ROS enzyme profile in axes. Germination percentage and axis growth were determined under treatment with ROS inhibitors and scavengers. Localization of O2•ˉ and H2O2 was done using nitroblue tetrazolium (NBT) and 3,3′,5,5′-tetramethyl benzidine dihydrochloride hydrate (TMB), respectively. Apoplastic level of O2•ˉ was monitored by spectrophotometric analysis of bathing medium of axes. Profiles of NADPH oxidase and superoxide dismutase (SOD) were studied by in-gel assay. Germination was retarded by treatments affecting ROS level except H2O2 scavengers, while axis growth was retarded by all. Superoxide synthesis inhibitor and scavenger prevented H2O2 accumulation in axes in later phase as revealed from TMB staining. Activity of Cu/Zn SOD1 was initially high and declined thereafter. Superoxide being produced in apoplast possibly by NADPH oxidase activity is further metabolized to •OH via H2O2. Germination process depends possibly on •OH production in the axes. Post-germinative axis growth requires O2•ˉ while the differentiating zone of axis (radicle) requires H2O2 for cell wall stiffening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call