Abstract

Background: Current attempts to regenerate cochlear sensorineural structures motivate further inspection of the human organ of hearing. Here, we analyzed the supernumerary inner hair cell (sIHC), a possible sign of regeneration and cell replacement.Methods: Human cochleae were studied using field emission scanning electron microscopy (FESEM; maximum resolution 2 nm) obtained from individuals aged 44, 48, and 58 years with normal sensorineural pure-tone average (PTA) thresholds (PTA <20 dB). The wasted tissue was harvested during trans-cochlear approaches and immediately fixed for ultrastructural analysis.Results: All specimens exhibited sIHCs at all turns except at the extreme lower basal turn. In one specimen, it was possible to image and count the inner hair cells (IHCs) along the cochlea representing the 0.2 kHz–8 kHz region according to the Greenwood place/frequency scale. In a region with 2,321 IHCs, there were 120 scattered one-cell losses or ‘gaps’ (5%). Forty-two sIHCs were present facing the modiolus. Thirty-eight percent of the sIHCs were located near a ‘gap’ in the IHC row (±6 IHCs).Conclusions: The prevalence of ectopic inner hair cells was higher than expected. The morphology and placement could reflect a certain ongoing regeneration. Further molecular studies are needed to verify if the regenerative capacity of the human auditory periphery might have been underestimated.

Highlights

  • In 1884, the Swedish anatomist Gustav Retzius presented surface preparations of the human auditory epithelium [1]

  • Electron microscopy studies of autopsied material are often limited by postmortem autolysis and age-related changes, and, to overcome this, perilymph fixation may be accomplished within hours after death

  • We used field emission scanning electron microscopy (FESEM) to analyze immediately fixed human cochleae removed at surgery

Read more

Summary

Introduction

In 1884, the Swedish anatomist Gustav Retzius presented surface preparations of the human auditory epithelium [1]. Lim and Lane [2] and Bredberg et al [3] were the first to reveal the fine surface structure of the mammalian organ of Corti (OC) using scanning electron microscopy (SEM) This was followed by high-resolution SEM studies in humans [4,5,6,7,8,9,10,11,12,13,14,15]. Methods: Human cochleae were studied using field emission scanning electron microscopy (FESEM; maximum resolution 2 nm) obtained from individuals aged 44, 48, and 58 years with normal sensorineural pure-tone average (PTA) thresholds (PTA

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.