Abstract

A mechanism for creating amino acid enantiomerism that always selects the same large-scale chirality is identified, and subsequent chemical replication and galactic mixing that would populate the Galaxy with the predominant species is described. This involves (1) the spin of the 14N in the amino acids, or in precursor molecules from which amino acids might be formed, that couples to the chirality of the molecules; (2) the neutrinos emitted from the supernova, together with the magnetic field from the nascent neutron star or black hole formed from the supernova, which selectively destroy one orientation of the 14N and thus select the chirality associated with the other 14N orientation; (3) chemical evolution, by which the molecules replicate and evolve to more complex forms of a single chirality on a relatively short timescale; and (4) galactic mixing on a longer timescale that mixes the selected molecules throughout the Galaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call