Abstract

We present new mechanisms by which the isotopic compositions of X-type grains of presolar SiC are altered by reverse shocks in Type II supernovae. We address three epochs of reverse shocks: pressure wave from the H envelope near t = 106 s, reverse shock from the presupernova wind near 108-109 s, and reverse shock from the interstellar medium near 1010 s. Using one-dimensional hydrodynamics we show that the first creates a dense shell of Si and C atoms near 106 s in which the SiC surely condenses. The second reverse shock causes precondensed grains to move rapidly forward through decelerated gas of different isotopic composition, during which implantation, sputtering, and further condensation occur simultaneously. The third reverse shock causes only further ion implantation and sputtering, which may affect trace element isotopic compositions. Using a 25 M☉ supernova model we propose solutions to the following unsolved questions: Where does SiC condense? Why does SiC condense in preference to graphite? Why is condensed SiC 28Si-rich? Why is O-richness no obstacle to SiC condensation? How many atoms of each isotope are impacted by a grain that condenses at time t0 at radial coordinate r0? These many considerations are put forward as a road map for interpreting SiC X grains found in meteorites and their meaning for supernova physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.