Abstract
Hubble tension is one of the most important problems in cosmology. Although the local measurements on the Hubble constant with Type Ia supernovae (SNe Ia) are independent of cosmological models, they suffer the problem of zero-point calibration of the luminosity distance. The observations of gravitational waves (GWs) with space-based GW detectors can measure the luminosity distance of the GW source with high precision. By assuming that massive binary black hole mergers and SNe Ia occur in the same host galaxy, we study the possibility of re-calibrating the luminosity distances of SNe Ia by GWs. Then we use low-redshift re-calibrated SNe Ia to determine the local Hubble constant. We find that we need at least 7 SNe Ia with their luminosity distances re-calibrated by GWs to reach a 2% precision of the local Hubble constant. The value of the local Hubble constant is free from the problems of zero-point calibration and model dependence, so the result can shed light on the Hubble tension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.