Abstract

We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M_aux, m_0, \tan\beta, and sign(\mu). The renormalization group equations exhibit a novel "focus point" (as opposed to fixed point) behavior, which allows squark and slepton masses to be far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the Wino, the stau, and the tau sneutrino. For the Wino LSP scenario, light Wino triplets with the smallest possible mass splittings are preferred; such Winos are within reach of Run II Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b -> s gamma, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.