Abstract

Porous graphitic carbon nitride microsphere with large specific surface area and controllable energy band structure is synthesized via a simple method with the supermolecule polymer of melamine-cyanuric acid (MCA) as the intermediates. The energy band structure and morphology of carbon nitride are closely correlative to the calcination time. And the CN-20 catalyst fabricated by calcination for 20h exhibit superior photocatalytic activity of hydrogen evolution reaction (HER) under visible-light (λ ≥420nm) irradiation. The photocatalytic and photoelectrochemical test results indicate that Pt is the optimum cocatalyst candidate compared with Pd, Ru, and Ag. Meanwhile, the time-dependent process of the intermediate pyrolysis to carbon nitride and the internal mechanism of photogenerated charge transfer between semiconductors and cocatalyst is investigated and supplemented by theoretical calculations. This work provides a novel and energy band structure controllable manufacture strategy for porous carbon nitride semiconductor with satisfying visible-light photocatalytic reduction performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.