Abstract

Using the diagrammatic many-body perturbation theory, various three-body dispersion terms that appear in the intermolecular Mo/ller–Plesset perturbation theory (MPPT) are identified and classified with regard to the effects of intramonomer electron correlation on the dispersion term. Via the connection with the supermolecular MPPT, it is demonstrated how the leading dispersion nonadditivities arise within supermolecular calculations that employ MPPT or coupled cluster formalisms. The numerical calculations for He3, Ne3, and Ar3 in triangular geometries fully confirm theoretical predictions. The calculated values of dispersion nonadditivity clearly show that the coupled cluster theory with single, double, and noniterative triple excitations provides the proper framework for the efficient inclusion of the intramonomer correlation effects in dispersion nonadditivity. The convergence of the two-body and three-body terms is shown to be very similar if we compare the three-body terms of an order higher than the two-body terms. This pattern is used to provide the estimates of the total nonadditivities in the three trimers within a few percent accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call