Abstract
The Dirac equation has resided among the greatest successes of modern physics since its emergence as the first quantum mechanical theory fully compatible with special relativity. This compatibility ensures that the expectation value of the velocity is less than the vacuum speed of light. Here, we show that the Dirac equation admits free-particle solutions where the peak amplitude of the wave function can travel at any velocity, including those exceeding the vacuum speed of light, despite having a subluminal velocity expectation value. The solutions are constructed by superposing basis functions with correlations in momentum space. These arbitrary velocity wave functions feature a near-constant profile and may impact quantum mechanical processes that are sensitive to the local value of the probability density as opposed to expectation values. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.