Abstract

The causality of superluminal signal transfer in the galaxy background is scrutinized. The cosmic time of the comoving galaxy frame determines a distinguished time order for events connected by superluminal signals. Every observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. In this way all observers arrive at identical conclusions on the causality of events connected by superluminal signals. The energy of tachyons (superluminal particles) is defined in the comoving galaxy frame analogous to the energy of subluminal particles. It is positive in the galaxy frame and bounded from below in the rest frames of geodesically moving observers, so that particle-tachyon interactions can be based on energy-momentum conservation. We study tachyons in a Robertson-Walker cosmology with linear expansion factor and open, negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving observers, synchronized by Lorentz boosts. In this context we show that no signals can be sent into the past of observers. If an observer emits a tachyonic signal, then the response of a second observer can never reach him prior to the emission, i.e., no predetermination can occur. The proof is based on the positivity of tachyonic energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call