Abstract

We have investigated the lubrication alignment behavior of point-plane contact and plane-plane contact between the GCr15 steel and polyimide (PI) friction pair using nematic liquid crystals (LCs) as the lubricant. In this system, rubbing orients the macromolecular PI molecules, and the oriented PI molecules induce alignment of the LC molecules in contact with or close to the oriented PI molecules. The LC molecules are aligned in the wear scar grooves of the PI film, and alignment extends to the GCr15-steel counterpart. Alignment of the LC molecules is correlated with the strong interaction force between the PI and LC molecules, the stable coordination structure of the LCs and GCr15 steel, and the weak interaction between the LC molecules. We performed simulations of the pretilt angle of PI and LCs and discussed the relationship between the pretilt angle and the friction properties. Owing to the small pretilt angle between PI and the LCs, the LC molecules orient almost parallel to the PI material, which is beneficial for superlubricity of this type of friction system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call