Abstract

Composition, structure, electrical, optical, mechanical properties and tribological behavior of diamond-like carbon films (DLC) are strongly dependent on the deposition system. Some hydrogenated amorphous carbon films (a-C:H) may exhibit superlow friction properties in ultra-high vacuum (UHV). The present paper compares tribological and mechanical properties of several DLC films prepared under different conditions. Friction coefficients were measured in an analytical ultra-high vacuum tribometer. The mechanical properties were evaluated from force-displacement curves using a nanoindentation instrument. Making use of continuous stiffness mode, Young's modulus and hardness were determined as a function of indentation depth. The measurements were performed at constant strain rates by special control of the load during indentation. We were, thus, able to determine the dependence of hardness on strain rate, characterizing a viscoplastic behavior. Many of the hydrogenated amorphous carbon films studied were significantly viscoplastic. The aim of this paper is to highlight the correlation between superlow friction and viscoplastic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.