Abstract

In the literature, the proof of superlinear convergence of approximate Newton or SQP methods for solving nonlinear programming problems requires twice smoothness of the objective and constraint functions. Sometimes, the second-order derivatives of those functions are required to be Lipschitzian. In this paper, we present approximate Newton or SQP methods for solving nonlinear programming problems whose objective and constraint functions have locally Lipschitzian derivatives, and establishQ-superlinear convergence of these methods under the assumption that these derivatives are semismooth. This assumption is weaker than the second-order differentiability. The extended linear-quadratic programming problem in the fully quadratic case is an example of nonlinear programming problems whose objective functions have semismooth but not smooth derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.