Abstract

We have observed a superlinear increase of photoluminescence (PL) intensity in a narrow range of excitation intensities for Zn-doped GaN. The characteristic intensity at which the abrupt increase occurs increases with increasing temperature. This is unlike the usual observations for defects in semiconductors in which the PL intensity increases linearly with excitation intensity, saturating at high intensity because defects become saturated with photogenerated charge carriers. The observed phenomenon is attributed to a redirection of electron and hole flow from nonradiative centers at low excitation intensity to a recombination path via the Zn${}_{\text{Ga}}$ acceptor at high excitation intensity. This is the same explanation responsible for the abrupt thermal quenching of PL reported earlier [Reshchikov et al., Phys. Rev. B 84, 075212 (2011).]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.