Abstract
Thermoelectric generators convert heat to electricity. Effective thermoelectric materials and devices have a low thermal conductivity and a high electrical conductivity. The performance of thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2 σT/ K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature, and K is the thermal conductivity. We have prepared 100 alternating layers of SiO2/SiO2+ Ge superlattice thin films using ion beam–assisted deposition for the thermoelectric generator device application. The 5 MeV Si ion bombardments were performed using the Center for Irradiation Materials’ Pelletron ion beam accelerator to form quantum dots and/or quantum clusters in the multinanolayer superlattice thin films to decrease the cross-plane thermal conductivity and increase the cross-plane Seebeck coefficient and cross-plane electrical conductivity. The thermoelectric and transport properties have been characterized for SiO2/SiO2+ Ge superlattice thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.